Loading
14722.0023 23S 4SWS VO Perkolation   Hilfe Logo

LV - Detailansicht

Wichtigste Meldungen anzeigenMeldungsfenster schließen
Allgemeine Angaben
Perkolation 
14722.0023
Vorlesung
4
Sommersemester 2023
Abteilung Mathematik
(Kontakt)
Anzahl der Zuordnungen zu laufenden und auslaufenden Studien ausblenden 
Studienart/Studienplan 
SPO-V
Zuordnung zu Modul 
Art Empf.
Sem.
ECTS
Credits
Prüfungsart Äquiv. Vorauss.
 
laufend 2022/23
Masterstudium
M1 105 Mathematik (HG-NRW)
20142
--
M3 105 Mathematik (HG-NRW)
20142
--
88 079 Informatik (HG-NRW)
20222
--
88 079 Informatik (HG-NRW)
20222
--
88 079 Informatik (HG-NRW)
20222
--
88 105 Mathematik (HG-NRW)
20152
--
88 105 Mathematik (HG-NRW)
20152
--
88 105 Mathematik (HG-NRW)
20152
--
88 105 Mathematik (HG-NRW)
20152
--
88 105 Mathematik (HG-NRW)
20152
--
88 105 Mathematik (HG-NRW)
20152
--
88 772 Wirtschaftsmathematik (HG-NRW)
20152
--
88 772 Wirtschaftsmathematik (HG-NRW)
20152
--
88 772 Wirtschaftsmathematik (HG-NRW)
20152
--
88 772 Wirtschaftsmathematik (HG-NRW)
20152
--
88 772 Wirtschaftsmathematik (HG-NRW)
20152
--
88 772 Wirtschaftsmathematik (HG-NRW)
20152
--
Zuordnungen: 2 
Angaben zur Abhaltung
Percolation

Percolation models have been playing a fundamental role in statistical physics and
mathematics for several decades by now. They had initially been investigated in the
gelation of polymers during the 1940s by chemistry Nobel laureate Flory and Stock-
mayer.

From a mathematical point of view, the birth of percolation theory was the introduction of Bernoulli percolation by Broadbent and Hammersley in 1957, motivated by research on gas masks for coal miners. For a presumably more relevant to your daily life model of percolation think of brewing coffee, where the term ‘percolator’ even refers to a certain type of coffee machine.


One of the key features of this model is the inherent stochastic independence which simplifies its investigation, and which has lead to very deep mathematical results.

While the model is easy to define and there has been tremendous progress during
the last decades, many interesting questions remain open. In this course we will cover a range of fundamental and by now classical results of percolation theory.

Further related literature will be mentioned along the course.
The course is aimed at MSc students in mathematics and business mathematics, and
forms part of the area stochastics and insurance mathematics.
Prerequisites: Probability theory I; probability theory II would be helpful, but is only needed at very few places.
Deutsch
Details
Für die Anmeldung zur Teilnahme müssen Sie sich in KLIPS 2.0 als Studierende*r identifizieren.
Angaben zur Prüfung
siehe Stellung im Studienplan
Details
Details
k.A.
Zusatzinformationen
[1] Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer Verlag, Berlin, second edition, 1999.

[2] Béla Bollobás and Oliver Riordan. Percolation. Cambridge University Press, New York, 2006.